Purpose

Maths is the study of numbers, shape and space, and how they are all related to each other and the real world.

Intent:

At Frimley, we believe that enjoyment is paramount to our aim of developing confident mathematicians. Through a rich and engaging mathematical curriculum, pupils will have opportunities to develop and apply their fluency, reasoning and problem-solving skills to support their attainment so that they are ready for further progress at the next stage of their educational development.

We aim to ensure that mathematics is exciting, engaging, appropriately challenging and provides all learners with the chance to achieve successes in every lesson so to foster a positive attitude and growth-mindset towards the subject. Fluency, reasoning and problem-solving are the focal points of learning; this along with a small-step approach with a focus on mastery ensures that children develop and secure their understanding of mathematical concepts and have the opportunity to demonstrate a deep understanding of the areas taught.

Implementation:

Through careful planning, use of a small-step approach and pre-teaching of processes and mathematical vocabulary, where appropriate, all learners are able to access each lesson. Assessment of learning, both during and after lessons, ensures that learners can be supported fluidly or extended appropriately thus providing all with the opportunity to deepen their learning in every lesson. In lessons, teachers provide pupils with appropriate models and scaffolds whilst resources are utilised, where appropriate, so that pupils can secure concrete and pictorial understanding of concepts or processes before applying their understanding to a range of abstract representations.

When planning lessons, teachers work collaboratively to ensure the needs of all learners across the year group are met: pre-teaching, representations during teaching inputs, assessment for learning tasks, accessible starting points, lesson progressions and appropriate challenge are carefully considered. Pupils are provided with retrieval challenges in all lessons to support retention and long-term memory of previously taught areas. Wherever possible, pupils are given opportunities to practise their fluency, reasoning and problem-solving skills in each lesson. Through full coverage of the National Curriculum, links to prior learning and real-life situations are explicitly made so that pupils are building on previous experiences whist also recognising the links that can be made across the curriculum and beyond. In lessons, resources from White Rose Hub are used to support the small-step approach; a range of other resources such as NCETMs mastery materials, Nrich, Teach Active and online platforms TTrockstars and Numbots are also regularly used to ensure that teaching is active, relevant and engaging. The intervention Number Stacks is also used to assess gaps and provide input for learners working below age related expectations to help close gaps and support progress.

Monitoring of maths provision will be an ongoing process throughout the academic year. Maths leaders will monitor lesson flip charts (including teacher models and inputs, learning scaffolds, resources used and learning activities) and learning outcomes through scrutiny of work and pupil and staff voice - both formally and informally. Assessment outcomes will also be monitored and analysed to identify wider school trends. Subsequent actions will be taken in response to all formats of monito ring to continually improve maths provision.

Possessing a range of mental maths strategies supports learning and progress in the 3 key areas of maths: fluency, reasoning and problem-solving. Regular mental maths lessons (at least once a week) support pupils' development in this area. Half-termly, children are assessed on their year group objectives for mental maths; whole class and individual progress is tracked and the focus of subsequent teaching and interventions are informed by this. TTrockstars is one of the online resources used to help inspire pupils in this area of learning.

Weekly TTrockstars tasks are set to provide pupils with the chance to consolidate the learning they have done in school.
Throughout the academic year, pupils will have opportunities to attend maths competitions and the maths leaders will continue to explore and utilise opportunities to raise the profile of maths across the school

Impact

- Pupils will enjoy maths, approaching the subject with a positive attitude and growth-mindset
- All pupils will be able to access learning and appropriate challenge for all will be provided in all lessons.
- The percentage of pupils achieving age related expectations or higher by the end of the academic year will increase thus ensu ring they are ready for further progress in the next stage of their educational development.
- Pupils will have a deep understanding of the methodology in maths and be able to explain their understanding. This will devel op their reasoning and problem-solving skills.
- Pupils will possess a wide range of mental strategies and will understand the importance of times tables and number bonds with the majority being able to recall all times tables by the end of Year 4.
- Mental maths methods will be embedded and be independently applied to solve challenging problems.
- Pupils will be able to make mathematical links to other areas of the curriculum and wider life.
- Pupils working below age related expectations will be supported to close gaps and make accelerated progress.
- Pupils will be actively engaged in representing the school in mathematical competitions.

National curriculum expectations:

Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing prob lems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject. By the end of key stage 2 , pupils are expected to know, apply and understand the matters, skills and processes as specified in the document below.

Pupils should be taught:

- To become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- To reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- To solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Maths Long term plan

	Year 3	Year 4	Year 5	Year 6
Autumn 1	Number - Place value Addition and subtraction	Number - Place value Addition and subtraction	Number - Place Value Addition and Subtraction	Number - Place value Addition, subtraction, multiplication and division
Autumn 2	Multiplication and division	Measurement - Area Multiplication and division	Multiplication and Division A Fractions A	Position and Direction Fractions Decimals
Spring 1	Further Multiplication and division Measurement - Length and Perimeter	Further Multiplication and division Measurement - Length and Perimeter	Multiplication and Division B Fractions B	Percentages Measure Ratio
Spring 2	Fractions and decimals Mass and Capacity	Fractions Decimals	Decimals and Percentages Perimeter and Area Statistics	Properties of shape Algebra
$\begin{aligned} & \text { Summer } \\ & 1 \end{aligned}$	Further Fractions Measurement - Money	Measurement - Money Time	Shape Position and Direction	Statistics Consolidation and investigations based on previous learning.
Summer 2	Time Geometry - Properties of shape Statistics - Graphs	Statistics - Graphs Geometry - Properties of shape Geometry - Position and movement	Decimals Negative Numbers Converting Units Volume	Consolidation and investigations based on previous learning.

What Frimley offers to its pupils: (Maths medium term plans)

		Year 3	Year 4	Year 5	Year 6
	Knowledge	Number- Place value - Count from 0 in multiples of 4, 8, $\mathbf{5 0}$ and 100 - Find $\mathbf{1 0}$ or $\mathbf{1 0 0}$ more or less than a given number - Recognise the place value of each digit in a three digit number - Compare and order numbers up to 1000. - Identify, represent and estimate numbers using different representations. - Read and write numbers up to $\mathbf{1 0 0 0}$ in numerals and in words. - Solve problems	Number- Place value - Numbers up to 4 digits - Introduction to decimals - Find $\mathbf{1 0 0 0}$ more or less than a given number. Count backwards through and past zero - Round to the nearest 10,100 or 1000 \& solve problems - Roman numerals to 100	Number- Place value - Numbers up to $\mathbf{1 , 0 0 0 , 0 0 0}$ - Count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - Round to the nearest 10000 and 100 000 - Roman numerals to $\mathbf{1 0 0 0}$ and recognise years - Prime numbers, prime factors and composite	Number- Place value - Numbers up to 10000000
	Crucial Learning	- A number in the hundreds has at least 3 digits. - \quad There are 10 ones in 10 . - There are 10 tens in 100. - There are 10 hundreds in 1,000. - When comparing numbers, I start with the highest place value column.	- A number in the thousands has at least 4 digits. - There are 10 thousands in 10,000. - When rounding to the nearest 10, I look at the ones column. - When rounding to the nearest 100, I look at the tens column. - When rounding to the nearest thousand, I look at the hundreds column. - In Roman numerals, $I=1, V=5$, $x=10, L=50, C=100$	- A number in the ten thousands has at least 5 digits. - A number in the hundred thousands has 6 digits. - There are 10 ten thousands in 100,000. - There are 100 hundred thousands in 1,000,000. - When rounding to the nearest ten thousand, I look at the thousands column. - When rounding to the nearest ten thousand, I look at the ten thousands column. In Roman numerals, $M=1,000$	- A number in the millions has at least 7 digits. - There are 10 millions in 10 million. - When rounding to the nearest million, I look at the hundred thousands column. - I must include 0 when adding or subtracting with negative numbers.
	Knowledge	Addition and Subtraction - Add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens. - a three-digit number and hundreds - Columnar addition and subtraction up to 3 digits	Addition and Subtraction - Add and subtract numbers with up to 4 digits - 2 step +/- problems deciding which operations \& methods to use/ why	Addition and Subtraction - Add and subtract whole numbers with more than 4 digits (and mentally)	Addition, Subtraction, Multiplication and Division - Multiply one-digit numbers with up to two decimal places by whole numbers - Multiply multi-digit numbers up to 4 digits (long multiplication) - Short and long division 4 divided by 2 digits (with decimals) Interpret remainders to context

	- Estimate the answer to a calculation and use inverse operations to check answers - Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction			- Use estimation to check answers to calculations - BIDMAS
Crucial Learning	- It does not matter what order I layout an addition. - When adding I must line up the place value columns correctly. - If I have 10 or more in a column, I can exchange with the column to the left. - Subtraction is the inverse of addition. - I must put the greater number on top when subtracting. - When subtracting I must line the place value columns up correctly. - If the digit I am subtracting is greater, I must exchange 1 with the column to the left. Addition is the inverse of subtraction.	Application of crucial learning to higher level challenge/problems	Application of crucial learning to higher level challenge/problems	- When multiplying a number by tens, I must use 0 as a placeholder. - When multiplying decimals by integers, I must put the digits in the correct place value column. - The decimal point does not move when multiplying numbers with decimals by integers. - $0.5 \times$ an integer is the same as finding half of the integer. - When dividing by a composite number, I use factor pairs to solve the division. Application of crucial learning to higher level challenge/problems
Knowledge	Multiplication and Division - Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. - Use x, \div and $=$ to write statements - Multiplication of two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. - Recognise odd and even numbers - Solve problems, including missing number problems, involving multiplication and division.	Multiplication and Division - Count in multiples of 6,7,9,25,1000 - Find the effect of dividing a one- or two-digit number by 10 and 100 - Multiplication and division facts up to $\mathbf{1 2 \times 1 2}$ - Multiplying together three numbers - Factor pairs - Multiply 3-digit numbers by a 1-digit - Harder correspondence problems such as n objects are connected to m objects	Multiplication and Division - Multiply numbers up to 4 digits by a one- or two digit - Divide numbers up to 4 digits by a one-digit number - Multiply and divide decimal numbers by 10,100 and 1000 - Squared and cubed numbers - Common factors of two numbers - Multi-step problems	Position and Direction
Crucial Learning	- Multiplying a number means I have \qquad equal groups of the number I am multiplying. - To multiply a 2 digit number by 1 digit, I can multiply the ones and tens and add the answers together. - Divide means to share into equal groups.	- To multiply a 3 digit number by 1 digit, I can multiply the ones, tens and hundreds and add the answers together. - When multiplying a number by 10 my digits move 1 place to the left. - When multiplying by 100 my digits move 2 places to the left.	- To find a missing number I must do the inverse. - A common multiple is a multiple found in two or more numbers. - Factors are numbers we can multiply together to get a product. - A prime number can only be divided by 1 and itself.	- When reading or plotting coordinates, I go across the x axis then up or down the y axis

					- I can use short division to divide numbers with decimals by integers. - To convert decimals to fractions, I use place value.
	Theology and vision links	Children enjoy spotting patterns which can things don't just happen by chance. Explicit understand the work.	e reflected in nature, and the concept of pro inks can be made where possible e.g Christian	The idea of God as a creationist is reinforce lues such as 'love thy neighbour' are deme	by proof in maths as it is in the bible, strated when children help others to
	Knowledge	Multiplication and Division - Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. - Use x, \div and $=$ to write statements - Multiplication of two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. - Recognise odd and even numbers - Solve problems, including missing number problems, involving multiplication and division.	Multiplication and Division - Count in multiples of 6,7,9,25,1000 - Find the effect of dividing a one- or two-digit number by 10 and 100 - Multiplication and division facts up to 12×12 - Multiplying together three numbers - Factor pairs - Multiply 3-digit numbers by a 1 -digit - Harder correspondence problems such as n objects are connected to m objects	Multiplication and Division B - Multiply numbers up to 4 digits by a one- or two digit - Divide numbers up to 4 digits by a one-digit number - Multiply and divide decimal numbers by 10,100 and 1000 - Squared and cubed numbers - Common factors of two numbers - Multi-step problems	Percentages - Find percentages of amounts.
	Crucial Learning	- Multiplying a number means I have___ equal groups of the number I am multiplying. - To multiply a 2 digit number by 1 digit, I can multiply the ones and tens and add the answers together. - Divide means to share into equal groups. - If a division has a remainder of 2, 1 write it as r 2 - 3, 4 and 8 multiplication tables - I Know that the 8 times table is double my 4 times table.	- To multiply a 3 digit number by 1 digit, I can multiply the ones, tens and hundreds and add the answers together. - When multiplying a number by 10 my digits move 1 place to the left. - When multiplying by 100 my digits move 2 places to the left. - When dividing a number by 10 my digits move 1 place to the right. - When dividing a number by 100 my digits move 2 places to the right. - When dividing a 3 digit number by 1 digit I can partition my number and divide each place value column into equal groups. - multiplication tables up to $12 \times$ 12.	- To find a missing number I must do the inverse. - A common multiple is a multiple found in two or more numbers. - Factors are numbers we can multiply together to get a product. - A prime number can only be divided by 1 and itself. - When multiplying by $1,000 \mathrm{my}$ digits move 3 places to the left. - When dividing by 1,000 my digits move 3 places to the right.	- To find 10% of an amount, divide the amount by 10. - To find 50% of an amount, divide the amount by 2. - To find 25% of an amount, divide the amount by 4. - To find 1% of an amount, divide the amount by 100 . - To find 5% of an amount, divide the amount by 10 and then divide the answer by 2 .

	Theology and vision links	Children enjoy spotting patterns which can be reflected in nature, and the concept of proof. The idea of God as a creationist is reinforced by proof in maths as it is in the bible, things don't just happen by chance. Explicit links can be made where possible e.g Christian values such as 'love thy neighbour' are demonstrated when children help others to understand the work.			
$\stackrel{\rightharpoonup}{n}$	Knowledge	Further Fractions - Add and subtract fractions with the same denominator <1 - Compare and order unit fractions, and fractions with the same denominators. - Solve problems that involve all of the above.	Measurement- Money - Convert between different units of measure - Compare and calculate different measures, including money	Shape and Position and Direction - Estimate and compare angles in degrees - Draw and measure angles in degrees - Use the properties of rectangles to deduce related facts - Distinguish between regular and irregular polygons based on reasoning	Statistics - Interpret and construct pie charts - Calculate and interpret the mean
	Crucial Learning	- A fraction is part of a whole. - The parts in a fraction are equal. - A unit fraction is when the numerator is 1 . - A non-unit fraction is when the numerator is more than 1. - $1 / 2=2 / 4$ - There are 10 tenths in a whole. - Equivalent fractions have different numerators and denominators but are equal to the same value. - When adding or subtracting fractions with the same denominator, only the numerator changes.	- When writing an amount of money in pounds, I must include a decimal point and 2 digits after the decimal point.	- When measuring angles with a protractor, I must line up the vertex of the angle with the dot at the centre of the protractor. - Angles on a straight line total 180 degrees. - Angles around a point total 360 degrees. - An irregular polygon is a 2D shape that has straight lines that are not equal and angles that are not equal. - When translating a shape, just the position changes. - When reflecting a shape, a vertex in the reflected shape will be the same distance from the mirror line as the original shape.	- There are 360 degrees in a circle. - The mean is the total of the numbers divided by how many numbers there is.
	Knowledge	Measurement - Money - Add and subtract amounts of money to give change, using both $£$ and p	Measurement- Time - Convert between different units of measure	Decimals	Consolidation and investigations based on previous learning.
	Crucial Learning	- $100 p=£ 1$.	- There are 12 months in a year	- The decimal point does not move when adding numbers with decimals. - When adding or subtracting numbers with decimals, I must layout digits in the correct place value column. - When adding or subtracting numbers with different decimal places, I can use 0 as a place holder.	
	Knowledge	Time - Tell and write the time from an analogue clock with accuracy of minutes including using Roman	Statistics - Interpret and present data using bar charts, pictograms and tables - Solve one-step and two step questions using information	Negative Numbers - Problems involving negative numbers	

